Tetrahedron Letters No.27, pp. 3199-3202, 1966. Pergamon Press Ltd. Printed in Great Britain.

STERBOCHEMISTRY OF ISOFLAVAN-4-OLS

A.S.R. Anjaneyulu, M. Gopala Rao, L. Ramachandra Row and C. Sri Krishna

Department of Chemistry, Andhra University, Waltair, India
(Received 9 May 1966)

NMR study of 7-methoxy and 7,4'-dimethoxy isoflavan-4-ols (I m.p. 138-40°, II m.p. 141-43°), reverses our earlier observation that the 4-OH could be equatorial in these compounds. These isoflavan-4-ols (I,II) were obtained by the action of NaBH₄ on the corresponding isoflavones. They suffer ready dehydration in presence of protonic reagents even below 50°.

Analysis of NMR spectrum (Table I) of 7,4'-dimethoxy isoflavan-4-ol (II) suggests an ABXY system giving $J_{AX}=3.5$, $J_{AY}=1.2$, $J_{BY}=-0.2$, $J_{AB}=10.3$, $J_{XY}=3.4$ c/s. Similar analysis was obtained for the 7-methoxy analogue (I). $J_{AX}=12.0$, $J_{BX}=3.2$, $J_{AY}=1.4$, $J_{BY}=-0.2$, $J_{AB}=10.4$, $J_{XY}=3.1$ c/s. In both cases A=2axH, B=2eqH, X=3axH and Y=4eqH.

From the above, the two isoflavan-4-ols (I,II) are 3,4-cis compounds so that with 3-aryl group equatorial, the 4-OH is axial. This is also consistant with the dehydration data¹. Earlier, Inoue et al.^{2,3} also suggested 3,4-cis configuration for these isoflavan-4-ols (I & II) solely on a consideration of the mechanism of catalytic reduction.

	MAR SI	sectra of i	soflavar	1-4-01s and 6	WMR spectra of isoflavan-4-ols and 6,4'-(OMe)2flavan-4-ol. T -values	Van-4-	٥١. ٦	-values	
	Compound	Aron	Aromatic protons	tons	H2A, 2B, 4	Methoxyl	oxyl	Ħ,	H0-→
i.	I. 7-0Me	H3+4+5+	H2 16 1	8,9 ^Н д		2	÷		
	isoflavan-4-ol 2.70	2.70	2.77* 2.85 2.9	3,38 3,56 · 3,44	5.14-5.84	6.24		6.59 * 6.89	8.22
11.	II. 7,4'-(OMe) ₂	H3,5,	H2 16 1		4			1	
	isoflavan-4-ol	2.90	3.06 3.19 3.23	3.41 3.60 3.45	5.25-6.06 6.25 6.22 6.58 ² 6.96	6.25	6.22	6.58 . 6.96	8.09
111.	6,4'-(OMe) ₂	H2 16 1	H3 15 1	H _{5,7,8}	н ₂ н ₄	ø		H _{3A,3B} 4-0H	₩-0H
	flavan-4-ol	2.58 * 2.71	2.97* 3.04	3.18* 3.24	4.98 5.00	1	6.20	6.25 6.20 7.30 * 8.18	7.95

* multiple peaks.

No. 27 3201

But the reduction of 2-substituted isoflavanones with Pt/H or NaBH₄ appears to give rise to the isomeric 3,4-<u>trans</u> isoflavan-4-ols. From a study of NMR data, Inoue et al.⁴ and Micheli et al.⁵ proved that the 2-methyl isoflavan-4-ols possess 4-equatorial hydroxyl $(J_{3H,4H}=7.5^4, 10.0^4, 7.1^5 \text{ c/s})$. It appears, therefore, that the presence (or absence) of the 2-methyl group directs the reducing agent to attack the carbonyl group from a side that permits the formation of equatorial (or axial) 4-hydroxyl.

Further, it is interesting to note that NaBH, or Pt/H also reduces flavanones to give flavan-48-ols with 4-eq OH⁶,7,8,9 It is, therefore, probable that the course of reduction of the flavanone carbonyl also follows a similar reaction path as in 2-methyl isoflavanones. The contribution of 7-methoxyl appears to be negligible, for, 6,4'-dimethoxy flavanone (III) also produces the 4-equatorial hydroxy compound (IV) during reduction with NaBH, 10 as could be seen from the NMR data which consists of a complex ABXY spectrum in which A and B quartets overlap as well as X and Y quartets. Analysis (Table I) gives $J_{AX}=11.5$, $J_{BX}=2.0$, $J_{AY}=10.5$, $J_{BY}=5.6$, $J_{AB}=13.0$ c/s where A=3eqH, B=3axH, X=2H, In this flavan-4-ol (IV) both the substituents are equatorial.

We are highly indebted to Dr. T.M.Spotswood for running the NMR spectra and to Prof. J.W.Clark-Lewis for their analysis. 3202 No.27

REFERENCES

- 1. A.S.R. Anjaneyulu, C. Sri Krishna and L. Ramachandra Row,

 <u>Tetrahedron</u>, 21,2677(1965)
- 2. N. Inoue, <u>Bull.Chem.Soc.Japan</u>, <u>37</u>,601,606(1964)
- N. Inoue, S. Yamaguchi and S. Fujiwara,
 <u>Bull.Chem.Soc.Japan</u>, <u>37</u>,588(1964)
- 4. N. Inoue and S. Ito, Chem. & Ind., 1382(1965)
- 5. R.A. Micheli, A.N. Booth, A.L. Livingstone and B.M.

 Bickoff, J.Medicinal Pharm.Chem., 5,321(1961)
- 6. J.W. Clark-Lewis, T.M. Spotswood and L.R. Williams,

 Proc.Chem.Soc., 20(1963)
- 7. C.P. Lillya, D. Kehoe, E.M. Philbin, M.V. Vickars and T.S. Wheeler, Chem. & Ind., 84(1963)
- 8. C.P. Lillya, S.E. Drewes and D.G. Roux,

Chem. & Ind., 784(1963)

- 9. H.G. Krishnamurty, K.G. Sarma and T.R. Seshadri,

 <u>Current Sci.(India)</u>, <u>32</u>,453(1963)
- L.R. Row, G.P. Sastry, P.V.S. Rao and M. Gopala Rao,
 J.Ind. Chem. Soc., 40,311 (1963)
- Note added:- After this paper was ready, we received a reprint from Prof.N.Inoue on the same topic which confirms our proton assignments. (S.Yamaguchi, S.Ito, A.Nakamura and N.Inoue, Bull.Chem.Soc.Japan, 38, 2187 (1965)